
Version Propagation in Three-Level

Component-Based Architectures

Authors

• * IMT – Mines Alès

• { Alexandre.Le-Borgne, Christelle.Urtado, Sylvain.Vauttier } @mines-ales.fr

+ LIRMM / CNRS & Montpellier University, France

{ David.Delahaye, Marianne.Huchard } @lirmm.fr

J
u

in
 2

0
1

7
 –

G
D

R
 G

P
L

,
M

o
n

tp
e

lli
e

r

Alexandre Le Borgne *

David Delahaye+

Marianne Huchard +

Christelle Urtado *

Sylvain Vauttier *

► Substitutability-based principles for predicting version propagation in three-

level component-based architectures

- Identification of component substitution scenarios

- component substitution is not a fine-grained enough criterion  parameter types into

signatures

► Future work

- Formalization and automation of version propagation

► Versioning models / architectures

- Representing the whole life-cycle of an application and version its representations

 Co-evolution

- Versioning models / architectures

► Dedal

- 3 abstraction levels (Figure 1):

Specification (Roles) / Configuration (Component classes) / Assembly

(Component instances)

 Keeping track of the whole life-cycle

- Changes may occur at any of the 3 architecture levels

► Problematics: Management of co-evolution and versioning of

architecture models

Hypothesis on types (Figure 1): 𝑩 ≼ 𝑿 ≼ 𝑨 ≼ 𝒁 ≼ 𝛀 ≼ 𝑹

Provided functionality

Specification Configuration Assembly

𝒀 ↬ 𝑨 𝒀 ↬ 𝑿 𝒀 ↬ 𝑩

Non-propagation

𝑿 ≼ 𝒀 ≼ 𝒁 𝑩 ≼ 𝒀 ≼ 𝑨 𝒀 ≼ 𝑿

Propagation

Inter-level Intra-level Inter-level Intra-level Inter-level Intra-level

𝒀 ∥ 𝑿
∨ (𝒀 ≺ 𝑿)

𝒀 ∥ 𝒁
∨ (𝒀 ≻ 𝒁)

(¬ 𝒀 ≼ 𝑨 ⇒ ↑)
∨ ¬(𝒀 ≽ 𝑩 ⇒↓)

¬(𝒀 ≼ 𝛀) ¬(𝒀 ≼ 𝑿) ¬(𝒀 ≼ 𝑹)

𝒀 ∥ 𝑿 ∧ 𝒀 ∥ 𝒁 ¬ 𝒀 ≼ 𝑨 ∨ ¬ 𝒀 ≽ 𝑩 ∧ ¬ 𝒀 ≼ 𝛀 ¬(𝒀 ≼ 𝑿)

Required functionality

Specification Configuration Assembly

𝒀 ↬ 𝒁 𝒀 ↬ 𝛀 𝒀 ↬ 𝑹

Non-propagation

𝑨 ≼ 𝒀 ≼ 𝛀 𝒁 ≼ 𝒀 ≼ 𝑹 𝒀 ≽ 𝛀

Propagation

Inter-level Intra-level Inter-level Intra-level Inter-level Intra-level

¬ 𝒀 ≼ 𝛀 ¬ 𝒀 ≽ A (¬ 𝒀 ≽ 𝒁 ⇒ ↑)
∨ ¬(𝒀 ≼ 𝑹 ⇒↓)

¬(𝒀 ≽ 𝑿) ¬(𝒀 ≽ 𝛀) ¬(𝒀 ≽ 𝑩)

𝒀 ∥ 𝛀 ∧ 𝒀 ∥ 𝑨 ¬ 𝒀 ≽ 𝒁 ∨ ¬ 𝒀 ≼ 𝑹 ∧ ¬ 𝒀 ≽ 𝑿 ¬ 𝒀 ≽ 𝛀 ∧ (¬(𝒀 ≽ 𝑩))

2. Rules for predicting version propagation

3. Example of version propagation

5. Conclusion and future work

Notations

𝐓𝟏 ≺ 𝐓𝟐: 𝑇1 is a subtype of 𝑇2

𝑻𝟏 ≼ 𝑻𝟐: 𝑇1 is a subtype of 𝑇2 or equal to 𝑇2.

𝑻𝟏 ≻ 𝑻𝟐: 𝑇1 is a supertype of 𝑇2.

𝑻𝟏 ≽ 𝑻𝟐: 𝑇1 is a supertype of 𝑇2 or equal to 𝑇2.

𝑻𝟏 ∥ 𝑻𝟐: 𝑇1 is not comparable to 𝑇2.

¬(𝑻𝟏≼ 𝑻𝟐) ⟺ (𝑇1 ≻ 𝑇2 ∨ (𝑇1 ∥ 𝑇2)): 𝑇1 is either a

supertype of 𝑇2 or not comparable to 𝑇2.

¬(𝑻𝟏≽ 𝑻𝟐) ⟺ (𝑇1 ≺ 𝑇2 ∨ (𝑇1 ∥ 𝑇2)): 𝑇1 is either a

subtype of 𝑇2 or not comparable to 𝑇2.

𝑻𝟐 ↬ 𝑻𝟏: 𝑇2 replaces 𝑇1.

[SATToSE 2017, Madrid, Spain] A. Le Borgne, D. Delahaye, M. Huchard, C. Urtado, and S.

Vauttier, “Preliminary study on predicting version propagation in three-level component-based

architectures”, to appear in Proceedings of the 7th Seminar on Advanced Techniques & Tools

for Software Evolution, 2017.

[SEKE 2017, Pittsburgh, USA] A. Le Borgne, D. Delahaye, M. Huchard, C. Urtado, and S.

Vauttier, “Substitutability-Based Version Propagation to Manage the Evolution of Three-Level

Component-Based Architectures”, to appear in Proceedings of the 29th International

Conference on Software Engineering & Knowledge Engineering, 2017.

Publications

1. Context and objectives

Multiple connections

► separately study each

connection

4. Generalization

Figure 4. Multiple connections

with an interface

Figure 3. Connected components

seen as a single composite

component

𝟏 𝐭𝐨 𝒏 replacement

► Cases of 1 𝑡𝑜 𝑛 replacement:

- A role may be realized by n component

classes

- Many roles may be realized by one

component class

- A component class may be instantiated by n

component instances

► multiple connected components can be
considered as a single composite
component

Architectural rules

I. Intra-level consistency

1. Unique name

2. Connected interfaces are compatible

3. The architecture realizes its functional objectives and the

architecture definition is composed of a connected graph

II. Inter-level coherence

1. All component roles from the specification are realized by

component classes in the configuration

2. Each connected provided interface in the configuration is

included in the specification

3. Every component class from the configuration is instantiated

at least once by a component instance in the assembly

4. Each connected provider in the assembly is an instance of a

provided interface from the configuration

Figure 1. Base case: Dedal three-level architecture

Figure 5. Propagating version at three architecture levels

Is a version of

Version/Change

propagation

