

Version Propagation in Three-Level **Component-Based Architectures**

1. Context and objectives

- Versioning models / architectures
 - Representing the whole life-cycle of an application and version its representations \rightarrow Co-evolution
 - Versioning models / architectures
- Dedal
 - 3 abstraction levels (Figure 1): -**Specification** (Roles) / **Configuration** (Component classes) / **Assembly** (Component instances) \rightarrow Keeping track of the whole life-cycle
 - Changes may occur at any of the 3 architecture levels -

Architectural rules

Intra-level consistency Ι.

- 1. Unique name
- Connected interfaces are compatible 2.
- The architecture realizes its functional objectives and the 3. architecture definition is composed of a connected graph
- II. Inter-level coherence
 - 1. All component roles from the specification are realized by

- - Problematics: Management of co-evolution and versioning of architecture models

Figure 1. Base case: Dedal three-level architecture

2. Rules for predicting version propagation

Hypothesis on types (Figure 1): $B \leq X \leq A \leq Z \leq \Omega \leq R$

		Provided fu	Inctionality		
Specification		Configuration		Assembly	
$Y \hookrightarrow A$		$Y \hookrightarrow X$		$Y \hookrightarrow B$	
		Non-prop	bagation		
$X \preccurlyeq Y \preccurlyeq Z$		$B \preccurlyeq Y \preccurlyeq A$		$Y \preccurlyeq X$	
		Propag	gation		
Inter-level	Intra-level	Inter-level	Intra-level	Inter-level	Intra-level
$(Y \parallel X) \\ \lor (Y \prec X)$	$(Y \parallel Z) \\ \lor (Y \succ Z)$	$(\neg(Y \leq A \Rightarrow \uparrow)) \\ \lor (\neg(Y \geq B \Rightarrow \downarrow))$	$\neg(Y \preccurlyeq \Omega)$	$\neg(Y \preccurlyeq X)$	$\neg(Y \preccurlyeq R)$
$(Y \parallel X) \land (Y \parallel Z)$		$\left[\left(\neg(Y \leq A)\right) \lor \left(\neg(Y \geq B)\right)\right] \land [\neg(Y \leq \Omega)]$		$\neg(Y \leq X)$	
		Required fu	Inctionality		
Specification		Configuration		Assembly	
$Y \hookrightarrow Z$		$Y \hookrightarrow \Omega$		$Y \hookrightarrow R$	
		Non-prop	bagation		

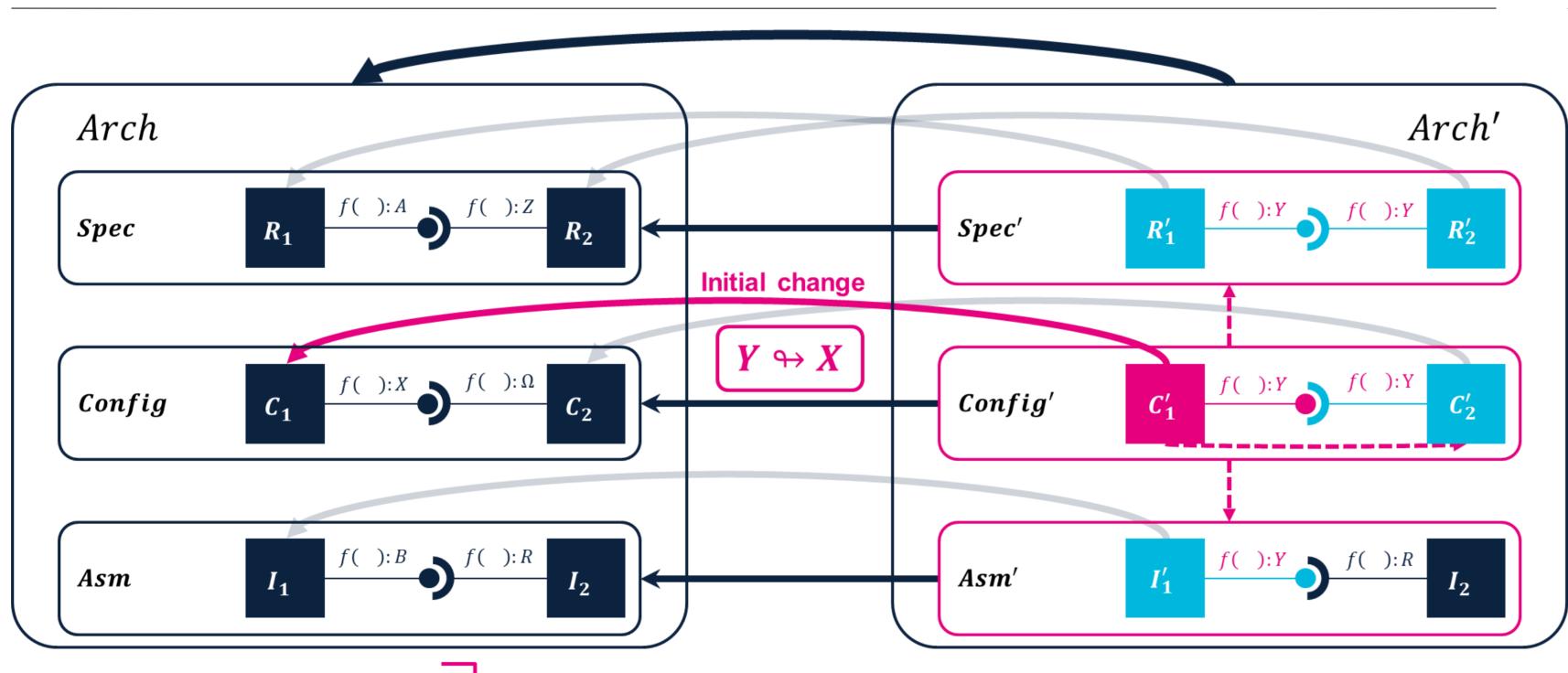
- component classes in the configuration
- 2. Each connected provided interface in the configuration is included in the specification
- 3. Every component class from the configuration is instantiated at least once by a component instance in the assembly
- 4. Each connected provider in the assembly is an instance of a provided interface from the configuration

Notations

- $T_1 \prec T_2$: T_1 is a subtype of T_2
- $T_1 \leq T_2$: T_1 is a subtype of T_2 or equal to T_2 .
- $T_1 > T_2$: T_1 is a supertype of T_2 .
- $T_1 \ge T_2$: T_1 is a supertype of T_2 or equal to T_2 .

$T_1 \parallel T_2$: T_1 is not comparable to T_2 .

 $\neg (T_1 \leq T_2) \Leftrightarrow ((T_1 > T_2) \lor (T_1 \parallel T_2)): T_1 \text{ is either a}$ supertype of T_2 or not comparable to T_2 .


$A \preccurlyeq Y \preccurlyeq \Omega$		$Z \preccurlyeq Y \preccurlyeq R$		$Y \succcurlyeq \Omega$		
		Prop	oagation			_
Inter-level	Intra-level	Inter-level	Intra-level	Inter-level	Intra-level	
$\neg(Y \preccurlyeq \Omega)$	$\neg(Y \succcurlyeq A)$	$(\neg(Y \geq Z \Rightarrow \uparrow))$ $\lor (\neg(Y \leq R \Rightarrow \downarrow))$		$\neg(Y \succcurlyeq \Omega)$	$\neg(Y \geq B)$	
$(Y \parallel \Omega) \land (Y \parallel A)$		$\left[\left(\neg (Y \ge Z) \right) \lor \left(\neg (Y \le R) \right) \right] \land [\neg (Y \ge X)]$		$\Big(\neg(Y \geq \Omega)\Big) \land (\neg(Y \geq B))$		

 $\neg (T_1 \ge T_2) \Leftrightarrow ((T_1 \prec T_2) \lor (T_1 \parallel T_2)): T_1 \text{ is either a}$

subtype of T_2 or not comparable to T_2 .

 $T_2 \leftrightarrow T_1$: T_2 replaces T_1 .

3. Example of version propagation

4. Generalization

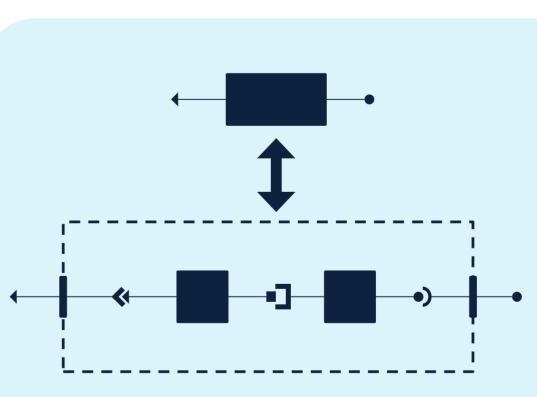
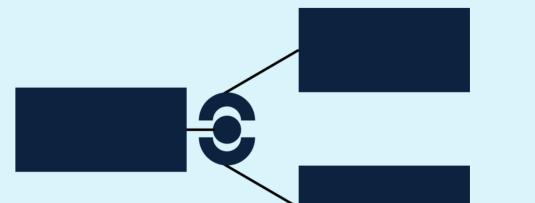


Figure 3. Connected components seen as a single composite component


Multiple connections

separately study each

connection

1 to *n* replacement

- **Cases of** 1 *to n* **replacement**:
 - A role may be realized by n component classes
 - Many roles may be realized by one component class
 - A component class may be instantiated by n component instances
- multiple connected components can be considered as a single composite component

 $B \leq X \leq A \leq Z \leq \Omega \leq R$ (Y \leq R) \langle (Y || \Omega) - [(\gamma(Y \leq A)) \langle (\gamma(Y \leq B))] \langle [\gamma(Y \leq \Omega)]

Figure 5. Propagating version at three architecture levels

Is a version of

Version/Change propagation

Figure 4. Multiple connections

with an interface

Alexandre Le Borgne * David Delahaye⁺ Marianne Huchard + Christelle Urtado * Sylvain Vauttier *

Authors

5. Conclusion and future work

- Substitutability-based principles for predicting version propagation in threelevel component-based architectures
 - Identification of component substitution scenarios
 - component **substitution is not a fine-grained enough criterion** → parameter types into signatures
- Future work
 - Formalization and automation of version propagation

Publications

[SATToSE 2017, Madrid, Spain] A. Le Borgne, D. Delahaye, M. Huchard, C. Urtado, and S. Vauttier, "Preliminary study on predicting version propagation in three-level component-based architectures", to appear in Proceedings of the 7th Seminar on Advanced Techniques & Tools for Software Evolution, 2017.

[SEKE 2017, Pittsburgh, USA] A. Le Borgne, D. Delahaye, M. Huchard, C. Urtado, and S. Vauttier, "Substitutability-Based Version Propagation to Manage the Evolution of Three-Level Component-Based Architectures", to appear in Proceedings of the 29th International Conference on Software Engineering & Knowledge Engineering, 2017.

* IMT – Mines Alès Alexandre.Le-Borgne, Christelle.Urtado, Sylvain.Vauttier } @mines-ales.fr + LIRMM / CNRS & Montpellier University, France { David.Delahaye, Marianne.Huchard } @lirmm.fr