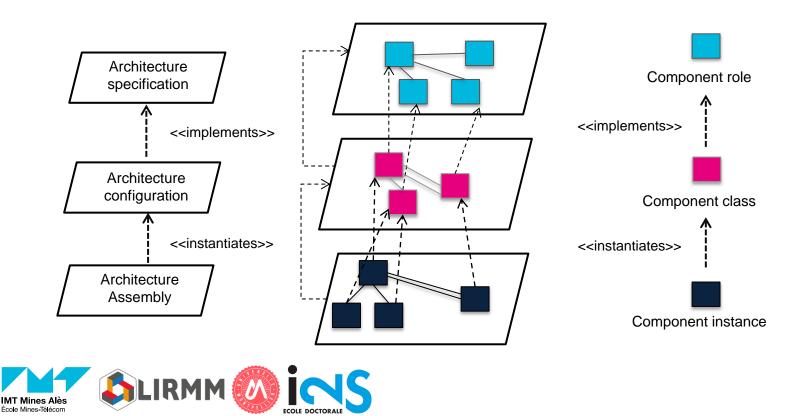

PRELIMINARY STUDY ON VERSION PROPAGATION IN THREE-LEVEL COMPONENT-BASED SOFTWARE ARCHITECTURES

Alexandre Le Borgne^{*}, David Delahaye⁺, Marianne Huchard⁺, Christelle Urtado^{*}, Sylvain Vauttier^{*}

* IMT – Mines Alès, Nîmes, France * LIRMM, Montpellier, France

SECTION 1: DEDAL, A THREE-LEVEL ADL

1.1 Component-based software engineering


2

SECTION 1: DEDAL, A THREE-LEVEL ADL

1.2 Dedal

Dedal

- A three-level architecture description language
 - Providing representations of main software engineering stages
 - Capture architectural decisions
 - foster architecture description reuse

2.1 Evolution in Dedal

Evolution

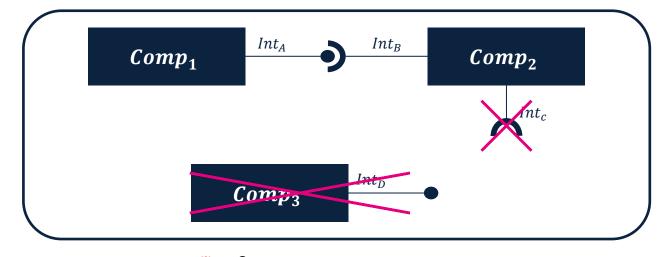
- Prevent obsolescence
- Derive new architectures from existing ones
- Preserve traceability
- Avoid inconsistencies (intra-level relation verification)
- Avoid loss of architectural decisions (inter-level relation enforcement)
 - Drift
 - Erosion

Automated evolution

- Automatically propose an evolution plan
 - Co-evolution
 - Propagation of changes within three architecture levels

2.1 Evolution in Dedal

Formalization of Dedal

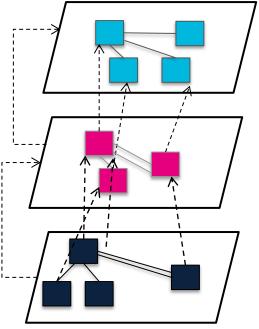

- Language B (first-order logic, set theory based formal language)
- formal definition of the relations between components on each architecture description level (intra-level relations)
 - connection, specialization (substitution)
- formal definition of the relations between the different architecture description levels (inter-level relations)
 - implementation, instantiation
- Derived from object type theory (*Liskov* 1993)

2.2 Architectural rules – Intra-level consistency

Intra-level consistency

- Name consistency
 - Unique name
- Interface consistency
 - Connected interfaces are compatible
- Interaction consistency
 - Functional objectives are realized (all the required interfaces are connected to compatible provided ones)
 - Architecture definition = connected graph

2.3 Architectural rules - Inter-level coherence


Inter-level coherence

 All component roles realized by component classes (realize relation)

& Each connected provided interface in the configuration is included in the specification.

- Every component class from the configuration is instantiated at least once by a component instance in the assembly (instantiate relation)
 - & Each connected provider in the assembly is an

instance of a provided interface from the configuration.

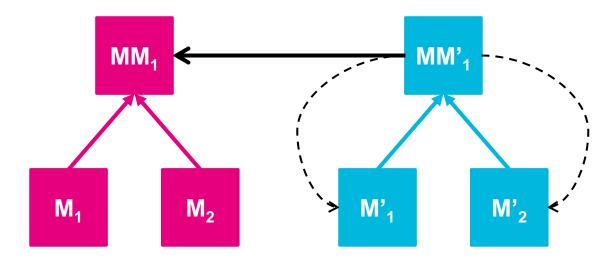
3.1 But why on Earth versioning three-leveled architecture descriptions?

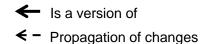
Keeping an history of the whole software life-cycle

- Individual component history
- Architecture levels history
 - Specification
 - Configuration
 - Assembly
- Whole architecture description history

As a consequence

- History of valid configurations
 - Versions of configurations that realize a specification
 - Versions of assemblies that instantiate a configuration

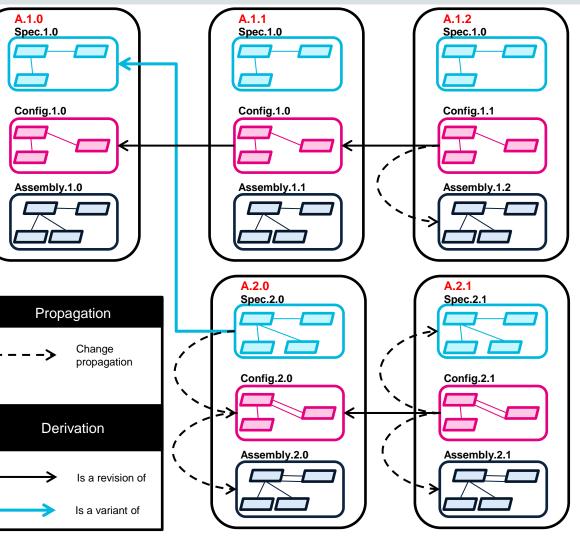



Spec₁

3.2 Versioning models

Classical approach

- Top-down approach
 - Meta-model is versioned
 - Changes are propagated to models
- Historic use of metamodels in model-driven engineering

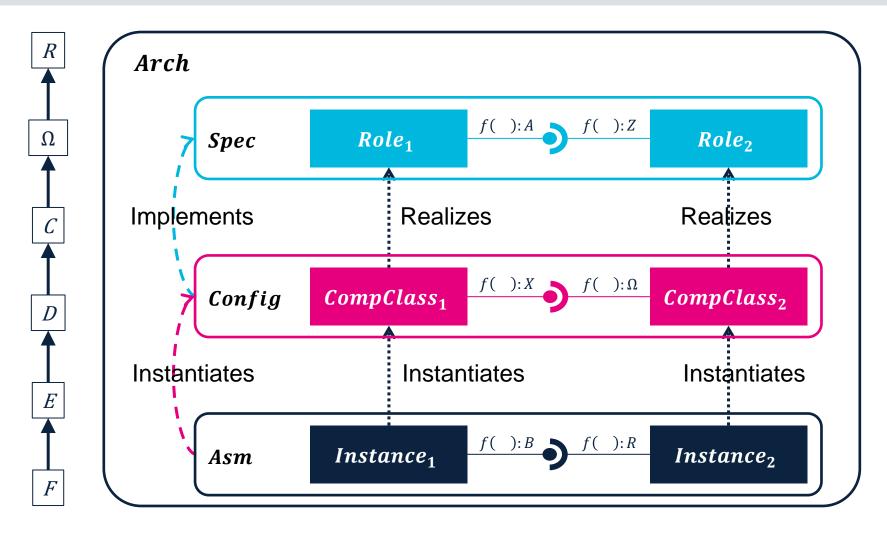

3.3 Versioning three-leveled architecture descriptions

Dedal approach

- Change may occur at any description level
- 2 kinds of version:
 - Revision (improving an existing artifact)
 - Variant (add new functionalities to an existing artifact)

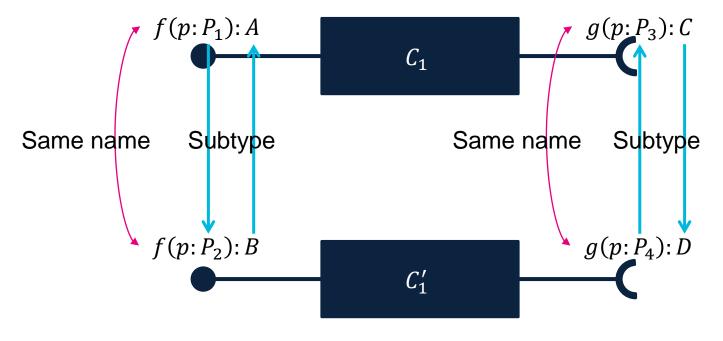
Preserve architectural integrity

Propagation of change / version



10

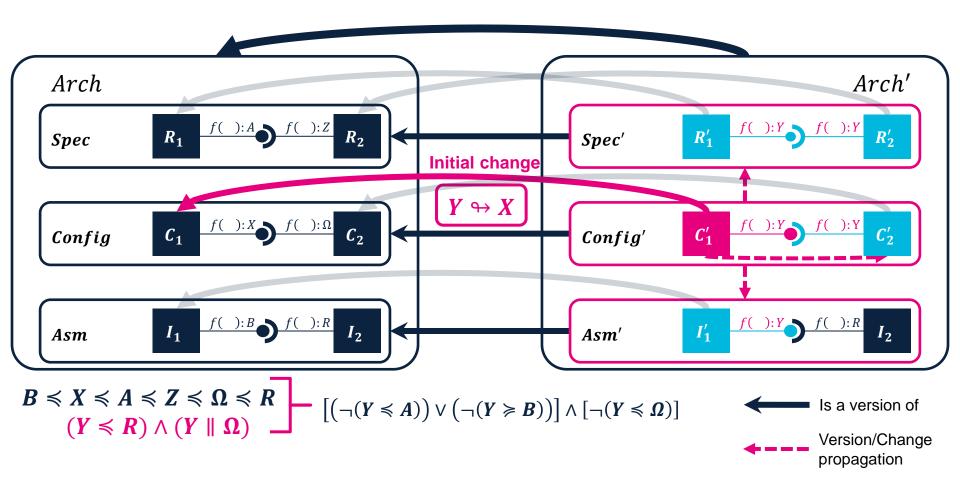
3.4 Base case



3.5 Substitutability-based version propagation study

Substitutable provided functionality

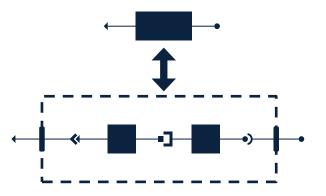
Substitutable required functionality

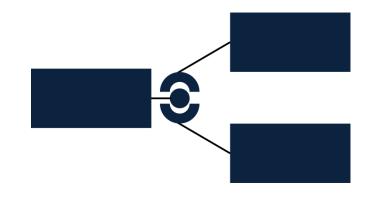


 C_1' is substitutable for C_1

12

3.6 Example of version propagation





3.7 Generalization

1 to n replacement

- Cases of 1 to n replacement:
 - A role may be realized by *n* component classes
 - Many roles may be realized by one component class
 - A component class may be instanciated by *n* component instances

Multiple connections

 Separately study each connection

SECTION 4: CONCLUSION AND PERSPECTIVES

Substitutability-based principles for predicting version propagation in three-level component-based architectures

- Identification of component substitution scenarios
- ► component substitution is not a fine-grained enough criterion → parameter types into signatures

Future work

Formalization and automation of version propagation

3.6 Rules for propagating version

Hypothesis on types (Figure 1): $B \leq X \leq A \leq Z \leq \Omega \leq R$

		Provided fu	inctionality		
Specification		Configuration		Assembly	
$Y \leftrightarrow A$		$Y \Leftrightarrow X$		$Y \Leftrightarrow B$	
		Non-prop	bagation	•	
$X \preccurlyeq Y \preccurlyeq Z$		$B \preccurlyeq Y \preccurlyeq A$		$Y \preccurlyeq X$	
		Propa	gation	·	
Inter-level	Intra-level	Inter-level	Intra-level	Inter-level	Intra-level
$(Y \parallel X) \\ \lor (Y \prec X)$	$(Y \parallel Z) \\ \lor (Y \succ Z)$	$ \begin{array}{l} (\neg(Y \leqslant A \Rightarrow \uparrow)) \\ \lor (\neg(Y \succcurlyeq B \Rightarrow \downarrow)) \end{array} $	$\neg(Y \preccurlyeq \Omega)$	$\neg(Y \leqslant X)$	$\neg(Y \leq R)$
$(Y \parallel X) \land (Y \parallel Z)$		$\left[\left(\neg(Y \leq A)\right) \vee \left(\neg(Y \geq B)\right)\right] \wedge \left[\neg(Y \leq \Omega)\right]$		$\neg(Y \preccurlyeq X)$	
		Required fu	Inctionality		
Specification		Configuration		Assembly	
$Y \hookrightarrow Z$		$Y \hookrightarrow \Omega$		$Y \Leftrightarrow R$	
		Non-prop	bagation		
$A \preccurlyeq Y \preccurlyeq \Omega$		$Z \preccurlyeq Y \preccurlyeq R$		$Y \succcurlyeq \Omega$	
		Propa	gation		
Inter-level		Inter-level	Intra-level	Inter-level	Intra-level
$ eg(Y \preccurlyeq \mathbf{\Omega})$		$ \begin{array}{l} (\neg (Y \geqslant Z \Rightarrow \uparrow)) \\ \lor (\neg (Y \leqslant R \Rightarrow \downarrow)) \end{array} $	$\neg(Y \ge X)$	$\neg(Y \succcurlyeq \Omega)$	$\neg(Y \geq B)$
$(Y \parallel \Omega) \land (Y \parallel A)$		$\left[\left(\neg(Y \geqslant Z)\right) \lor \left(\neg(Y \preccurlyeq R)\right)\right] \land \left[\neg(Y \geqslant X)\right]$		$(\neg(Y \ge \Omega)) \land (\neg(Y \ge B))$	

