
SUBSTITUTABILITY-BASED

VERSION PROPAGATION TO

MANAGE THE EVOLUTION OF

THREE-LEVEL COMPONENT-

BASED ARCHITECTURES Alexandre Le Borgne*,

David Delahaye+,

Marianne Huchard+,

Christelle Urtado*,

Sylvain Vauttier*

* IMT – Mines Alès, Nîmes, France
+ LIRMM, Montpellier, France

1. DEFINITIONS

2. DEDAL, A THREE-LEVEL ARCHITECTURE
DESCRIPTION LANGUAGE

3. EVOLUTION OF THREE-LEVELED
ARCHITECTURES IN DEDAL

4. PREDICTING VERSION PROPAGATION IN
DEDAL

5. RELATED WORK

6. CONCLUSION AND PERSPECTIVES

OUTLINE

DEFINITIONS

SECTION 1: DEFINITIONS

4

Component Architecture

DEDAL, A THREE-LEVEL

ARCHITECTURE DESCRIPTION

LANGUAGE

SECTION 2: DEDAL, A THREE-LEVEL ADL

6

2.1 Component-based software engineering

Architecture

Configuration

Functional

requirements

Component

repositories

Architecture

Design

Architecture

Implementation

Architecture

Deployment

Architecture

Specification

Architecture

Assembly

SECTION 2: DEDAL, A THREE-LEVEL ADL

7

2.2 Dedal

Dedal
► A three-level architecture description language

- Providing representations of main software engineering stages

- Capture architectural decisions

- foster architecture description reuse

Architecture

specification

Architecture

configuration

Architecture

Assembly

<<implements>>

<<instantiates>>

<<implements>>

Component role

Component class

Component instance

<<instantiates>>

MANAGING THE EVOLUTION OF

THREE-LEVELED ARCHITECTURE

DESCRIPTIONS IN DEDAL

SECTION 3: EVOLUTION OF DEDAL ARCHITECTURES

9

3.1 Evolution in Dedal

Evolution
► Prevent obsolescence

► Derive new architectures from existing ones

► Preserve traceability

► Avoid inconsistencies (intra-level relation verification)

► Avoid loss of architectural decisions (inter-level relation enforcement)
- Drift

- Erosion

Automated evolution
► Automatically propose an evolution plan

- Co-evolution

- Propagation of changes within three architecture levels

SECTION 3: EVOLUTION OF DEDAL ARCHITECTURES

10

3.1 Evolution in Dedal

Formalization of Dedal’s concepts
► Langage B (first-order logic, set theory based formal language)

► formal definition of the relations between components on each architecture

description level (intra-level relations)
- connection, specialization (substitution)

► formal definition of the relations between the different architecture description levels

(inter-level relations)
- implementation, instantiation

► Derived from object type theory (Liskov 1993)

SECTION 3: EVOLUTION OF DEDAL ARCHITECTURES

11

3.2 Architectural rules – Intra-level consistency

Intra-level consistency
► Name consistency

- Unique name

► Interface consistency
- Connected interfaces are compatible

► Interaction consistency
- Functional objectives are realized (all the required interfaces are connected to compatible

provided ones)

- Architecture definition = connected graph

𝑪𝒐𝒎𝒑𝟏 𝑪𝒐𝒎𝒑𝟐

𝐼𝑛𝑡𝐴 𝐼𝑛𝑡𝐵

𝑪𝒐𝒎𝒑𝟑
𝐼𝑛𝑡𝐷

𝐼𝑛𝑡𝑐

SECTION 3: EVOLUTION OF DEDAL ARCHITECTURES

12

3.3 Architectural rules – Inter-level coherence

Inter-level coherence
► All component roles are realized by component classes

► Each connected provided interface in the configuration is

included in the specification.

► Every component class from the configuration is

instantiated at least once by a component instance in the

assembly

► Each connected provider in the assembly is an instance

of a provided interface from the configuration.

PREDICTING VERSION

PROPAGATION IN DEDAL

SECTION 4: VERSION PROPAGATION

14

4.1 But why versioning three-leveled architecture descriptions?

Keeping an history of the whole software life-cycle
► Individual component history

► Architecture levels history
- Specification

- Configuration

- Assembly

► Whole architecture description history

As a consequence
► History of valid configurations

- Versions of configurations that realize a specification

- Versions of assemblies that instantiate a configuration

- …

► Adapting architectures

► Reusing architecture

descriptions

𝑺𝒑𝒆𝒄𝟏

𝑪𝒐𝒏𝒇𝒊𝒈𝟏,𝟏 𝑪𝒐𝒏𝒇𝒊𝒈𝟏,𝟐 𝑪𝒐𝒏𝒇𝒊𝒈𝟏,𝟑

𝑨𝒔𝒎𝒃𝟏,𝟏,𝟏 𝑨𝒔𝒎𝒃𝟏,𝟏,𝟐 𝑨𝒔𝒎𝒃𝟏,𝟐,𝟏 𝑨𝒔𝒎𝒃𝟏,𝟑,𝟏 𝑨𝒔𝒎𝒃𝟏,𝟑,𝟐 𝑨𝒔𝒎𝒃𝟏,𝟑,𝟐

SECTION 4: VERSION PROPAGATION

15

4.2 Versioning models

Classical approach
► Top-down approach

- Meta-model is versioned

- Changes are propagated to

models wich new version

conforms the new version of

the meta-model and are

versions of previous models

► Historic use of meta-

models in model-driven

engineering

MM1

M1 M2

MM’1

Is a version of

M’1 M’2

Propagation of changes

SECTION 4: VERSION PROPAGATION

16

4.3 Versioning three-leveled architecture descriptions

Dedal approach
► Change may occur at any

description level

► 2 kinds of version:
- Revision (improving an

existing artifact)

- Variant (add new

functionalities to an existing

artifact)

Preserve architectural

integrity
► Propagation of change /

version

A.1.0
Spec.1.0

Config.1.0

Assembly.1.0

A.2.0
Spec.2.0

Config.2.0

Assembly.2.0

A.1.1
Spec.1.0

Config.1.0

Assembly.1.1

A.1.2
Spec.1.0

Config.1.1

Assembly.1.2

A.2.1
Spec.2.1

Config.2.1

Assembly.2.1

Change

propagation

Propagation

Is a revision of

Derivation

Is a variant of

SECTION 4: VERSION PROPAGATION

17

4.4 Base case

R

Ω

C

D

E

F

𝑨𝒓𝒄𝒉

Implements

Instantiates

Realizes Realizes

Instantiates Instantiates

𝑪𝒐𝒏𝒇𝒊𝒈 𝑪𝒐𝒎𝒑𝑪𝒍𝒂𝒔𝒔𝟏
𝑓 : 𝑋

𝑪𝒐𝒎𝒑𝑪𝒍𝒂𝒔𝒔𝟐
𝑓 : Ω

𝑺𝒑𝒆𝒄 𝑹𝒐𝒍𝒆𝟏
𝑓 : 𝐴 𝑓 : 𝑍

𝑹𝒐𝒍𝒆𝟐

𝑨𝒔𝒎 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝟏
𝑓 : 𝐵

𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝟐
𝑓 : 𝑅

SECTION 4: VERSION PROPAGATION
4.5 Substitutability-based version propagation study

Substitutable provided functionality Substitutable required functionality

18

𝐶1

𝐶2

𝑓 𝑝: 𝑃1 : 𝐴

𝑓 𝑝: 𝑃2 : 𝐵

𝑔 𝑝: 𝑃3 : 𝐶

𝑔 𝑝: 𝑃4 : 𝐷

Subtype Subtype Same name Same name

𝐶2 is substitutable for 𝐶1

SECTION 4: VERSION PROPAGATION

19

4.6 Rules for propagating version

Hypothesis on types (Figure 1): 𝑩 ≼ 𝑿 ≼ 𝑨 ≼ 𝒁 ≼ 𝛀 ≼ 𝑹

Provided functionality

Specification Configuration Assembly

𝒀 ↬ 𝑨 𝒀 ↬ 𝑿 𝒀 ↬ 𝑩

Non-propagation

𝑿 ≼ 𝒀 ≼ 𝒁 𝑩 ≼ 𝒀 ≼ 𝑨 𝒀 ≼ 𝑿

Propagation

Inter-level Intra-level Inter-level Intra-level Inter-level Intra-level

𝒀 ∥ 𝑿

∨ (𝒀 ≺ 𝑿)

𝒀 ∥ 𝒁

∨ (𝒀 ≻ 𝒁)

(¬ 𝒀 ≼ 𝑨 ⇒ ↑)

∨ ¬(𝒀 ≽ 𝑩 ⇒↓)

¬(𝒀 ≼ 𝛀) ¬(𝒀 ≼ 𝑿) ¬(𝒀 ≼ 𝑹)

𝒀 ∥ 𝑿 ∧ 𝒀 ∥ 𝒁 ¬ 𝒀 ≼ 𝑨 ∨ ¬ 𝒀 ≽ 𝑩 ∧ ¬ 𝒀 ≼ 𝛀 ¬(𝒀 ≼ 𝑿)

Required functionality

Specification Configuration Assembly

𝒀 ↬ 𝒁 𝒀 ↬ 𝛀 𝒀 ↬ 𝑹

Non-propagation

𝑨 ≼ 𝒀 ≼ 𝛀 𝒁 ≼ 𝒀 ≼ 𝑹 𝒀 ≽ 𝛀

Propagation

Inter-level Intra-level Inter-level Intra-level Inter-level Intra-level

¬ 𝒀 ≼ 𝛀 ¬ 𝒀 ≽ A (¬ 𝒀 ≽ 𝒁 ⇒ ↑)

∨ ¬(𝒀 ≼ 𝑹 ⇒↓)

¬(𝒀 ≽ 𝑿) ¬(𝒀 ≽ 𝛀) ¬(𝒀 ≽ 𝑩)

𝒀 ∥ 𝛀 ∧ 𝒀 ∥ 𝑨 ¬ 𝒀 ≽ 𝒁 ∨ ¬ 𝒀 ≼ 𝑹 ∧ ¬ 𝒀 ≽ 𝑿 ¬ 𝒀 ≽ 𝛀 ∧ (¬(𝒀 ≽ 𝑩))

SECTION 4: VERSION PROPAGATION

20

4.7 Example of version propagation

𝐴𝑟𝑐ℎ′

𝑺𝒑𝒆𝒄′ 𝑹𝟏
′

𝑓 : 𝑌
𝑹𝟐

′
𝑓 : 𝑌

𝑪𝒐𝒏𝒇𝒊𝒈′

𝑨𝒔𝒎′ 𝑰𝟏
′

𝑓 : 𝑌
𝑰𝟐

𝑓 : 𝑅

𝐴𝑟𝑐ℎ

𝑺𝒑𝒆𝒄 𝑹𝟏
𝑓 : 𝐴

𝑹𝟐
𝑓 : 𝑍

𝑪𝒐𝒏𝒇𝒊𝒈 𝑪𝟏
𝑓 : 𝑋

𝑪𝟐
𝑓 : Ω

𝑨𝒔𝒎 𝑰𝟏
𝑓 : 𝐵

𝑰𝟐
𝑓 : 𝑅

Initial change

𝑩 ≼ 𝑿 ≼ 𝑨 ≼ 𝒁 ≼ 𝛀 ≼ 𝑹
(𝒀 ≼ 𝑹) ∧ (𝒀 ∥ 𝛀)

¬ 𝒀 ≼ 𝑨 ∨ ¬ 𝒀 ≽ 𝑩 ∧ ¬ 𝒀 ≼ 𝜴

𝒀 ↬ 𝑿
𝑪𝟏

′
𝑓 : 𝑌

Is a version of

𝑪𝟐
′

𝑓 : Y

Version/Change

propagation

SECTION 3: VERSION PROPAGATION

21

4.8 Generalization

1 𝑡𝑜 𝑛 replacement
► Cases of 1 𝑡𝑜 𝑛 replacement:

- A role may be realized by 𝑛 component classes

- Many roles may be realized by one component class

- A component class may be instanciated by 𝑛 component

instances

Multiple connections
► Separately study each

connection

RELATED WORK

SECTION 5: RELATED WORK

23

Many ADLs
 C2-SADEL, Darwin, Wright, Dynamic Wright, ArchWare, SAEV, SAEM,

Plastik...

ADL 3-levels

(Full life-cycle

coverage)

Finest grained

type

Architecture

version aware

SOFA 2.0  (configuration

and non-descriptive

assembly)

 Interface type  (Through

composite

components)

XADL 2.0  (design-time and

run-time)

 Interface


MAE  (design-time and

run-time)

 Interface

elements (signature

+ input parameters)



CONCLUSION AND

PERSPECTIVES

SECTION 6: CONCLUSION AND PERSPECTIVES

25

Substitutability-based principles for predicting version

propagation in three-level component-based architectures

► Identification of component substitution scenarios

► component substitution is not a fine-grained

enough criterion  parameter types into signatures

Future work

► Focus on the representation of the versioning

concepts

► Versioning meta-model

► Version-ready Dedal meta-model

► Formalization and automation of version propagation

► Extraction of component-based architecture models

from descriptors (Spring, OSGi, Maven…)

QUESTIONS?

